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Abstract: - The purpose of this paper is to consider a new generalization of the special polynomials. The combine use of integral transform and
special polynomial provide a power full tool to deal with Fraction derivatives and integral.
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1. INTRODUCTION AND PRELIMINARIES.

The use of integral transforms to deal with fractional derivatives trace

back to Riemann and Liouville

[9,10 ]. The possibility of exploiting integral transforms in a wider
context involving “ exotic” operator has been discussed in references
[ 4,51, where taking advantage form the definition of the generalized

L () function [2,p.91.
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The function ®(X,S,a) [1,7] has the integral representation
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and class of function introduced in [7]
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It has been shown that
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An analogous result can be exploited for more complicated operator,
be recalling,
indeed , that

d
o0 () = f(e'X) . (16)
We find
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We can also conclude that
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This last result becomes more interesting by noting that its relevance
to the ®f1 (x,s,a, b), d(x,s,a) and ¢(v) functions defined
in [7].

It is indeed readily understood that
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Special case of (1.11)

(). b=0,A= =1, then
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1.12)

Where @ (X, ,1) is the generalized zeta function defined by (1.3)
[1,7]

Case (i) When b=0,

dY“[ 1 1" .
(X&j [m—:| =X ®#(X,a,,u)

— x“CI); X, a, 1),

(1.13)

which was studied recently by Goyal and Laddha [11].

The series representation of @ , (X, , 1) is

n=0 IIJ + n I
(1.14)

(#=21LR(a)>0,[x<1)).

After clarifying that the use of meaningless operational form may
have non trivial consequence if placed in a proper frame work .We
will discuss further integral transform consequence of equation (1.8) ,
we find that
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Let us now consider the case involving second order derivatives

namely
o2\ "
(7 _87J f(x)=
(b)

1 < - t—% tfiz
— = [e" Pt o £ (x)dt
'y, (@) 9
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The action of the second of the exponential operator containing the

second order derivative can be specified by mean of the Gauss
transform
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so that
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In this introductory section we have state that by combining the
properties of exponential operator and suitable integral
representation.

In this paper we will show how families of special polynomial may
provide a powerful complement to the theory of fractional operators.

2. INTEGRAL TRANSFORM AND SPECIAL POLYNOMIALS.

It is well known that the polynomial [ 12 ]
g
r,n-2r
Hr(IZ)(X’y):n' : L
= ri(n-2r)!
(21)

can be viewed as Gauss Transform of the ordinary monomial
X", we find indeed,
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According to equation (1.18) and (2.2) , we obtain

62 ja 1 K ’7t’% R
y—Y—s| X"=———|e TtTHP(x, yt)dt
( ox? ) F(b)(a)-([

(23)

The transform on the R.H.S of equation (2.3) defines new family
of polynomials, denoted by , H((If‘f)) (x,y,b;7).

The relevant generating function is easily obtained from their
operational definition.
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Special case of (2.5)

When b=0,

HEDX Y b)Y = HE (X, y;7) .

the polynomial , H ® (X, y; ) was discuss by G.Dattoli and
P.E. Ricci [4].

The properties of this new family of polynomial are fairly easy
to obtain and we reported some properties hear.

From definition (2.5) we find .e.g.
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Further result will be discussed in the following section.

3, Extension and Concluding Remarks

We have already remarked that the polynomials
((;0 f)) (X,¥,b;7) can be recognized as special form of
truncated polynomials we will further discuss identifications.

According to the discussion of the previous section, the
following identity can easily be proved:

AN S "
(y yaxj X :—Ie Ct (x4 yt) dt

(b) r(b) (a) 0
HER (X, y,0;7)

(CAY)

The properties of the polynomials H((,:O/Il)) (X, y,b; ) canalso
be easily recovered. It is However worth stressing their link with the
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so called Bessel Polynomials [9 ]. By setting

YA
b=0,a=n+Lx=1y= E , we can make the identification

Z
n+1Hrsl) (LEJJ = yn(z) )

(3.2)

In this concluding section we find it worthwhile to mention briefly
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Itivariable extension of the class of function
(X, y,b; ») .This multivariable polynomials

({X}T YA o 7/) can be defined by
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(3.3)

Further comment on the properties of the above function and on

their

usefulness in application will be presented elsewhere.
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